. GRADUATE

' SHOWCASE

RESEARCH = CREATE | INNOVATE

Learning Sparse and Structured Gaussian
Embedding of protein sequences using
pairwise constraints

Kishan K C | PhD, GCCIS
November 22, 2019

%FSX%OLFIATE EDUCATION R I T



Learning Sparse and Structured Gaussian Embedding of protein sequences GRADUATE

using pairwise constraints - SHOWCASE

Introduction

» \What do they have in common?

= Basic biology to keep them alive and functioning.

» E.g. Undergoing several different
biochemical processes such as:

» Breaking down food

= Repairing tissues or worn out cells

= Replicating DNA
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Proteins

* Proteins allow organisms to undergo these basic life processes

* Need energy from your last food?

» Proteins build the enzymes used by the digestive system to break down and extract
nutrients from food.

= \Want to build muscles?

= Muscles are build from proteins.

= How can organism stay alive?

» Proteins form the enzymes need to replicate DNA and replace old and worn out cells.
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Protein-Protein interactions (PPI)

» Proteins rarely act alone as their functions tend to be regulated

= Numerous proteins organized by their physical contacts forms molecular
machines that carries out biological and molecular processes

» Study of these contacts:
» Understand biological phenomenon
= Insights about molecular etiology of diseases

= Discovery of putative drug targets

= Contacts between proteins: Protein Protein interactions (PPI)
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Problem

Predict if two proteins interact.

Protein A
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Amino acid sequence
o” —", o % 000
* Proteins are made up of smaller units called o002 3 &
amino acids. “oo00” 09 ﬁ
0 . Amino Acids
= Strings of amino acids are arranged in particular § 0l e 0%°Pey
order. a ,
‘ b , o Amino Acids
= Protein A5Z2X5 % s o000
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9000007
= Amino acid sequence is the primary structure of e goe
the prOteIn Ala: Alanine GIn: Glutamine Leu: Leucine Ser: Serine
] . ] ] ] Arg:Arginine. GIu:GIut;micacid Lys: Lysing ' Thr: Threonine
= determines the protein’s unique three-dimensional Asn: Asparagine  Gly: Glycine Met: Methionine  Trp: Tryptophane
Asp:Aspartic acid His: Histidine Phe: Phenylalanine  Tyr: Tyrosisne
Shape. Cys:Cysteine lle: Isoleucine Pro: Proline Val: Valine
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Previous works

» Predict interactions between a pair of protein sequences

» State-of-the-art methods proposed Siamese network to model the mutual
influence between proteins.

DPPI (Hashemifar et al. 2018) PIPR (Chen et al. 2019)
= Deep convolutional neural network * Deep Recurrent Convolutional neural
(CNN) to learn protein representation network (RCNN) to learn protein
representation
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Challenges

» Hard to explain the predictions i.e. lack transparency
= Computationally expensive approach in Siamese setting

For instance:
* Human has nearly 20,000 proteins.
= Nearly 200 million possible interactions.

= |f processing an interaction takes 1 second, total processing time > 6 years.
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Step 3:

Proposed approach

= Sequence encoder Embedding

Wi
Linear Linear

= Bidirectional GRU to model contextual and

<

sequential properties of amino acids - 1
= Handles variable length sequences e gu | Etgiz """ | %g
= Captures long term dependencies e e
P g P —§ [ 3
n i Bi-GRU
Sparse gating s i i i
= Guides model to selectively focus on specific Seduchce xt ’i_ """" "t
amino acids in the sequence Ty | PR re!
= — - — I _
= Gaussian embedding s t
'c“é;@g; MKRSYKTLPTYFFSFF

* Model the uncertainty about the representation of
amino acid sequences
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Sparse gating mechanism

" Proteins interact via interface, small region of
protein structure

Softmax Sparsemax! Fusedmax?

* Full support e Sparse weight but distributed | = Sparse and contiguous

[ 7 [ /T ] [ [ [ O [ HE | | EEEEE

MRPAQLLLNTAKKTSGGYKIPVELTPLFLAV ( S parse ) MRPAQLLLNTAKKTS
GVALCSGTYFTYKKLRTDETLRLTGNPEL > . YFTYKKLRTDETLRLTGNPEL
SSLDEVLAKDKD L Gatlng J SSLDEVLAKDKD

v

1. From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification, André F. T. Martins, Ramdn Fernandez Astudillo, ICML 2016.
2. A Regularized Framework for Sparse and Structured Neural Attention, Niculae, Vlad, and Mathieu Blondel, NeurlPS 2017.
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Experimental setup

= Select a batch of n protein sequences
» Encode these sequences to Gaussian distributions
» Retrieve positive and negative interactions that involve these n proteins

= Minimize the statistical distance between interacting proteins while
maximizing the distance for noninteracting proteins.

1 1
dist® = ||u; — pjll3 + |57 — B2 ||%

L =% Yahert Limey- (B~ +exp(=Ei))
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Results
Yeast Human

Method AUROC AP AUROC AP
Our method + sparsemax 0.924+0.002 0.9254-0.001 0.887+0.003 0.891+0.002
Our method + fusedmax 0.91940.003 0.921+0.002 0.8814+0.002 0.886+0.001
DPPI (Hashemifar et al. 2018) 0.8914+0.004 0.857+0.007 0.870+0.004 0.835+40.005
PIPR (Chen et al. 2019) 0.909+0.003 0.91240.004 0.8784+0.002 0.88240.003

Table 1: Comparison with the state-of-the-art models
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Ablation study
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Model configuration AUROC AP

No gating 0.880+0.001 0.875+0.003

~ Softmax  0.881+0.001 0.877+0.001
SE+RF Fusedmax 0.909+£0.001 0.912+0.002
Sparsemax 0.913+0.001 0.91640.002

- Softmax  0.882+0.001 0.879+0.002
GE + RF  Fusedmax  0.919£0.003 0.921+0.001
Sparsemax  0.924+0.002 0.92540.001

Table 2: Study of model components on Yeast dataset
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Interpretability
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LSM8

SMD2

RPC10

MGR2

Ground truth motif

MSATLKDYLNKRVVIIKVDG
ECLIASLNGFDKNTNLFITN
VFNRISKEFICKAQLLRGSE
IALVGLIDAENDDSLAPIDE
KKVPMLKDTKNKIENEHVIW
EKVYESKTK

MSSQIIDRPKHELSRAELEE
LEEFEFKHGPMSLINDAMVT
RTPVIISLRNNHKITARVKA
FDRHCNMVLENVKELWTEKK
GKNVINRERFISKLFLRGDS
VIVVLKTPVE

MPPLPQNYAQQQPSNWDKFK
MGLMMGTTVGVCTGILFGGF
AIATQGPGPDGVVRTLGKYI
AGSAGTFGLFMSIGSIIRSD
SESSPMSHPNLNLQQQARLE
MWKLRAKYGIRKD

MLSFCPSCNNMLLITSGDSG
VYTLACRSCPYEFPIEGIEI
YDRKKLPRKEVDDVLGGGWD
NVDQTKIQCPNYDTCGGESA

YFFQLQIRSADEPMTTFEYKC
VNCGHRWKEN

Sparsemax

MSATLKDYLNKRVVIIKVDG
ECLIASLNGFDKNTNLFITN
VFNRISKEFICKAQLLRGSE
IALVGLIDAENDDSLAPIDE
KKVPMLKDTKNKIENEHVIW
EKVYESKTK

MSSQIIDRPKHELSRAELEE
LEEFEFKHGPMSLINDAMVT
RTPVIISLRNNHKIIARVKA
FDRHCNMVLENVKELWTEKK
GKNVINRERFISKLFLRGDS
VIVVLKTPVE

MPPLPQNYAQQQPSNWDKFK
MGLMMGTTVGVCTGILFGGF
AIATQGPGPDGVVRTLGKYI
AGSAGTFGLFMSIGSIIRSD
SESSPMSHPNLNLQQQARLE
MWKLRAKYGIRKD

MLSFCPSCNNMLLITSGDSG
VYTLACRSCPYEFPIEGIEI
YDRKKLPRKEVDDVLGGGWD
NVDQTKTQCPNYDTCGGESA
YFFQLQIRSADEPMTTFYKC
VNCGHRWKEN

Fusedmax

MSATLKDYLNKRVVIIKVDG
ECLIASLNGFDKNTNLFITN
VFENRISKEFICKAQLLRGSE
IALVGLIDAENDDSLAPIDE
KKVPMLKDTKNKIENEHVIW
EKVYESKTK

MSSQIIDRPKHELSRAELEE
LEEFEFKHGPMSLINDAMVT
RTPVIISLRNNHKIIARVKA
FDRHCNMVLENVKELWTEKK
GKNVINRERFISKLFLRGDS
VIVVLKTPVE

MPPLPQNYAQQQPSNWDKFK
MGLMMGTTVGVCTGILFGGF
AIATQGPGPDGVVRTLGKYI
AGSAGTFGLFMSIGSIIRSD
SESSPMSHPNLNLQQQARLE
MWKLRAKYGIRKD

MLSFCPSCNNMLLITSGDSG
VYTLACRSCPYEFPIEGIEI
YDRKKLPRKEVDDVLGGGWD
NVDQTKTQCPNYDTCGGESA
YFFQLQIRSADEPMTTFYKC
VNCGHRWKEN
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Interpretability: case study

(b) Validated contact between
the residues in the predicted
segments.

(a) Important segments pre-
dicted by our model.
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