Deep learning on graphs: Learning from graph-structured data

Kishan KC Oct 15, 2018

Deep Learning vs Machine Learning

Deep Learning

IM GENET

DNA Sequence

Natural Language Processing

And so on.....

What does deep neural nets learn?

- Learns representations of raw data
- Translational equivariance (weight sharing)
- Compositional hierarchy

Regular grids

A lot of real-world data does not "exist" on regular grids Graph-structured data

Graphs

- Ubiquitous data structure
 - Social Networks
 - Molecular Graphs
 - Biological Protein-Protein Networks
 - Recommender Systems

Molecules

Protein interaction networks

Knowledge graph

Road maps

Applications

Representation Learning on graphs

Embedding nodes

Goal is to encode nodes to lower dimensional representation so that the similarity in the embedding space approximates the similarity in the original network.

Encoder maps each node to a low dimensional vector: Encoder(a) = z_a

Early methods

- Random walk based approach
 - DeepWalk
 - Node2vec
- Strong baselines

Review: convolution on regular grid

Feature

Image

 $h_i \in \mathbb{R}^F$ are activations of a pixel or node

Update for a single pixel:

- Transform messages individually $W_i h_i$ •
- Add everything up $\sum_{i} W_{i} h_{i}$ •

Full update: $h_4 = \sigma(W_0 h_0 + W_1 h_1 + \dots + W_8 h_8)$

Generalization to graphs (irregular grid)

Consider an undirected graph

Aggregate neighborhood information for red node

$$\begin{array}{ll} \textbf{Update} \\ \textbf{rule:} \quad \mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right) \end{array}$$

Graph Convolutional networks (GCN)

Gene Network Embedding (GNE):

Deep model for gene interaction network inference

GNE Overview

Given a gene network denoted as G = (V, E, A), gene network embedding aims to learn a function f that maps gene network structure and their attribute information to a d-dimensional space where a gene is represented by a vector $y_i \in \mathbb{R}^d$ where $d \ll M$. The low dimensional vectors y_i and y_j for genes v_i and v_j preserve their relationships in terms of the network topological structure and attribute proximity.

Background: First Order Proximity

- Pairwise proximity between vertices
- For any pair of vertices,
 - If $A_{i_j} > 0$, first order proximity between v_i and v_j is positive
 - Otherwise, first order proximity between v_i and v_j is 0

Background: Second Order Proximity

- Proximity of the pair's neighborhood structure
- N_u is neighborhood of vertex u and N_v is neighborhood of vertex v
- Similarity between N_u and N_v gives second order proximity

Background: Attribute Proximity

- Similarity in attributes between vertices u and v
- Vertices with similar attributes will be placed close to each other in embedding space
- Example

Vertex	Place	Major	College	Gender
A	Nepal	CS	RIT	Male
В	Germany	HCI	UR	Female
С	Nepal	SE	RIT	Male
D	USA	IMGS	MIT	Male

GNE Architecture

GNE: Embedding

GNE Network Structure Modeling

Encode one-hot encoded representation of a gene v_i via embedding lookup.

$$\mathbf{v}_i^{(s)} = \mathbf{W}_{id} v_i$$

GNE Expression Modeling

Exponential Linear unit (ELU) to model non-linearity of gene expression x_i and capture underlying patterns.

$$\mathbf{v}_i^{(a)} = \mathrm{elu}(\mathbf{W}_{att} \cdot x_i)$$

GNE: Learning representation

Concatenation of structural and attribute representation

$$\mathbf{v}_i = [\mathbf{v}_i^{(s)} \quad \lambda \mathbf{v}_i^{(a)}]$$

Transformation of concatenated representation via k-hidden layers with hyperbolic tangent activation.

$$\mathbf{h}_{i}^{(k)} = \delta_{k} (\mathbf{W}_{k} \mathbf{h}_{i}^{(k-1)} + b^{(k)})$$

20

GNE: Predicting probabilities

Last layer outputs the probability vector which contains conditional probability of all other genes to gene v_i

$$\mathbf{o}_{i} = [p(v_{1}|v_{i}), p(v_{2}|v_{i}), \dots, p(v_{M}|v_{i})]$$

where
$$p(v_{j}|v_{i}) = \frac{\exp(\widetilde{\mathbf{v}}_{j} \cdot \mathbf{h}_{i}^{(k)})}{\sum_{j'=1}^{M} \exp(\widetilde{\mathbf{v}}_{j'} \cdot \mathbf{h}_{i}^{(k)})}$$

Optimization:

$$\Theta^* = \underset{\Theta}{\operatorname{argmax}} \left[\sum_{i=1}^{M} \sum_{v_j \in N_i} \log \frac{\exp(\widetilde{\mathbf{v}}_j \cdot \mathbf{h}_i^{(k)})}{\sum_{j'=1}^{M} \exp(\widetilde{\mathbf{v}}_{j'} \cdot \mathbf{h}_i^{(k)})} \right]$$

21

Visualizing the embeddings

- Visualize embeddings on 2D space using t-SNE package
- **Operons**: genes that interact with each other and are co-regulated.
 - Colored the points in 2D space with operons

• Significant test to see if genes within same operons are likely to have similar representation

Comparison with other methods

- Randomly removed 50% of interactions as test set to predict missing interactions
- Experimental results with and without expression data

Methods	Yeast		E. coli	
	AUROC	AUPR	AUROC	AUPR
Isomap	0.507	0.588	0.559	0.672
LINE	0.726	0.686	0.897	0.851
node2vec	0.739	0.708	0.912	0.862
GNE*	0.787	0.784	0.930	0.931
GNE	0.825	0.821	0.940	0.939

Temporal holdout validation

- Two version of interaction dataset: 2017 and 2018 version
 - 2018 version has **12,835** new interactions for yeast and **11,185** new interactions for E. coli
- Randomly selected 50% of interactions from 2017 version as training data to predict new interactions in 2018 version
- Experimental results with and without expression data

Methods	Yeast		E. coli	
	AUROC	AUPR	AUROC	AUPR
LINE	0.620	0.611	0.569	0.598
node2vec	0.640	0.609	0.587	0.599
GNE	0.710	0.683	0.653	0.658

Impact of network sparsity

- Hold out 10% interactions as test dataset
- Change the sparsity of training data by randomly removing a portion of remaining interactions
- Evaluation with and without expression data

Relative importance of topology and expression data

- Evaluation of parameter λ to see the impact on model's performance
- Values of λ used in experiment: [0, 0.2, 0.4, 0.6, 0.8, 1, 10, 100, 1000]
- Integration of expression data improves model's performance

Future works

- Integration of multi-omics data
- Exploring advanced graph-based deep learning approach for gene network inference

Any questions?