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Deep Learning vs Machine Learning
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Deep Learning

Speech data DNA Sequence

Natural Language Processing

And so on……..
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What does deep neural nets learn?

• Learns representations of raw data

• Translational equivariance (weight sharing)

• Compositional hierarchy

Regular grids
A lot of real-world data does not “exist” on regular grids
Graph-structured data

From indico.io 4



Graphs
• Ubiquitous data structure

• Social Networks
• Molecular Graphs
• Biological Protein-Protein Networks
• Recommender Systems ………..

Molecules

Road maps

Social network

Knowledge graphProtein interaction 
networks

Brain networks
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Applications

Deep Learning

Node 
Classification

Graph 
Classification

Link 
Prediction

Graph-structured data

Network 
Visualization
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Representation Learning on graphs
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Embedding nodes

e

g

Goal is to encode nodes to lower dimensional representation so that the similarity in 
the embedding space approximates the similarity in the original network.

Encoder(e)

Encoder(g)

!"
!#

Embedding space

Original Network

Encoder maps each node to a low dimensional vector:
Encoder(a) = !$ 8



Early methods

• Random walk based approach 

• DeepWalk

• Node2vec

• Strong baselines
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Walk(d->g)= {d, f, e, h, c, g} Skipgram model
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Review: convolution on regular grid

ℎ0 ℎ1 ℎ3

ℎ%

Update for a single pixel:
• Transform messages individually &'('
• Add everything up ∑'&'('

ℎ% ∈ ℝ, are activations of a pixel or node

Full update:
ℎ4=/(10ℎ0 + 11ℎ1 + … .+18ℎ8)
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Generalization to graphs (irregular grid)

Consider an undirected graph Aggregate neighborhood information
for red node
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Graph Convolutional networks (GCN)
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Gene Network Embedding (GNE):
Deep model for gene interaction network inference

Sparse adjacency matrix

Expression data

GNE Gene interaction 
prediction
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GNE Overview
Given a gene network denoted as ! = ($, &, '), gene network embedding aims to learn a
function ) that maps gene network structure and their attribute information to a *-
dimensional space where a gene is represented by a vector +, - ℝ* where * ≪ 0. The
low dimensional vectors +, and +1 for genes 2, and 21 preserve their relationships in terms
of the network topological structure and attribute proximity.
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Background: First Order Proximity

• Pairwise proximity between vertices
• For any pair of vertices, 

• If !", $ > 0, first order proximity between '" and '$ is positive 
• Otherwise, first order proximity between '" and '$ is 0
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Background: Second Order Proximity

• Proximity of the pair’s neighborhood structure
• !" is neighborhood of vertex " and !# is neighborhood of vertex #
• Similarity between !" and!# gives second order proximity
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Background: Attribute Proximity

• Similarity in attributes between vertices u and v
• Vertices with similar attributes will be placed close to each other in embedding 

space

• Example

Vertex Place Major College Gender
A Nepal CS RIT Male

B Germany HCI UR Female 

C Nepal SE RIT Male

D USA IMGS MIT Male
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GNE Architecture
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GNE: Embedding

GNE Network Structure Modeling
Encode one-hot encoded representation of a gene !" via embedding lookup.

GNE Expression Modeling
Exponential Linear unit (ELU) to model non-linearity of gene expression #" and capture
underlying patterns.

$%&

$'(( 19



GNE: Learning representation

Concatenation of structural and attribute representation

Transformation of concatenated representation via !-hidden layers with hyperbolic tangent
activation. "!

20



GNE: Predicting probabilities

Last layer outputs the probability vector which contains conditional probability of all
other genes to gene !"

#ℎ%&%

Optimization:
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Visualizing the embeddings

• Visualize embeddings on 2D space using t-SNE package
• Operons: genes that interact with each other and are co-regulated.

• Colored the points in 2D space with operons

• Significant test to see if genes within same operons are likely to have similar 
representation

GNE LINE node2vec
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Comparison with other methods

Methods Yeast E. coli
AUROC AUPR AUROC AUPR

Isomap 0.507 0.588 0.559 0.672

LINE 0.726 0.686 0.897 0.851

node2vec 0.739 0.708 0.912 0.862

GNE* 0.787 0.784 0.930 0.931

GNE 0.825 0.821 0.940 0.939

• Randomly removed 50% of interactions as test set to predict missing interactions

• Experimental results with and without expression data
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Temporal holdout validation

Methods Yeast E. coli
AUROC AUPR AUROC AUPR

LINE 0.620 0.611 0.569 0.598

node2vec 0.640 0.609 0.587 0.599

GNE 0.710 0.683 0.653 0.658

• Two version of interaction dataset: 2017 and 2018 version
• 2018 version has 12,835 new interactions for yeast and 11,185 new interactions for E. coli

• Randomly selected 50% of interactions from 2017 version as training data to predict 
new interactions in 2018 version

• Experimental results with and without expression data
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Impact of network sparsity

• Hold out 10% interactions as test dataset
• Change the sparsity of training data by randomly removing a portion of remaining 

interactions
• Evaluation with and without expression data 

Yeast E. coli
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Relative importance of topology and expression data

• Evaluation of parameter ! to see the impact on model’s performance
• Values of ! used in experiment: [0, 0.2, 0.4, 0.6, 0.8, 1, 10, 100, 1000]
• Integration of expression data improves model’s performance

Yeast E. coli

26



Future works

• Integration of multi-omics data 

• Exploring advanced graph-based deep learning approach for gene network inference

Any questions?
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