
Topology-preserving Embedding Model

• Topological Information: Gene Interaction Network

• Learns low dimensional representation for each gene, preserving topological proximity 
between genes.

• Deep Neural Network to model topological proximity for gene interaction network.

• Learning binary classifier to separate interacting gene pairs from non-interacting pairs.
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Learning topology-preserving embedding for 
gene interaction networks

Introduction

• Understanding functional aspects of genes or proteins is crucial to 
provide insights into underlying biological phenomenon for different 
health and disease conditions. 

• Often intractable through biological experiments. 

• Propose a deep neural network architecture to learn lower 
dimensional representation [1] for each gene, by preserving the 
topological properties of gene interaction network.

• By preserving network topology, this approach place genes with 
similar topological patterns closer to each other in embedding space.

• Encoding genes to lower dimensional representation will assist tasks 
like gene function prediction, genetic interaction prediction and gene 
ontology reconstruction.  

• We show that our model learns comprehensive representation of 
network topology of gene interaction networks that improves the 
performance in genetic interaction prediction for yeast and ecoli 
datasets.

Conclusion
• Our method can learn effective representation for gene interaction networks that 

can be used to infer unknown gene interactions.
• Future work includes integration of other information about genes like gene 

expression, functional annotations, sequence similarity, functional information 
etc. [6] and evaluation of gene embedding for gene function prediction and gene 
ontology reconstruction. 

Results: Genetic Interaction Prediction

• Optimal parameters

• AUROC comparison shows that GNE outperforms other methods. 

• Performance of our model depends on the percentage of interactions taken for 
training the model. 

Methods Yeast Ecoli
AUROC AUPR AUROC AUPR

Isomap [3] 0.507 0.588 0.559 0.672
LINE [4] 0.726 0.686 0.897 0.851

node2vec [5] 0.739 0.708 0.912 0.862
Our method 0.787 0.784 0.930 0.931

Dataset Learning rate Batch size λ d
Yeast 0.005 128 0.8 128
Ecoli 0.005 64 1.0 128

Datasets
• Interaction network data from BioGRID database [2]. 

Interaction Network Data
Organism # (Genes) # (Interactions)

Yeast 5,950 544,652
Ecoli 4,511 148,340
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Background

Gene Network can be defined as graph G = (V, E) where
V = {V1, V2,….,VM} denotes the genes or proteins, 
E = {eij} is the neighborhood relationship between genes, and

Structural Proximity : the proximity of nodes in network structure.

Direct Proximity Indirect Proximity

Given a gene network denoted as G = (V, E), gene network embedding 
aims to learn a function f that maps topological properties of gene vi to 
d-dimensional vector y where d << |V|. The objective of function f is to 
learn low dimensional vector yi and yj for gene vi and vj such that the 
similarity between them explicitly preserves the topological similarity.
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