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Overview

» Understanding functional aspects of genes or proteins is crucial to
provide insights into underlying biological phenomena for different health
and disease conditions.

» Often intractable through biological experiments.

» Topological landscape of gene interactions provides the support for
understanding such phenomena.

» Sparse connectivity between the genes

» We propose Gene Network Embedding (GNE), a deep neural network

architecture to learn lower dimensional representation for each gene, by
integrating the topological properties ot gene interaction network with
additional information such as expression data.

» Outperforms strong baselines.

Quantitative results

Result on interaction prediction

» AUROC compatrison shows that GN!
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-, outperforms other strong baselines.
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Gene Network Embedding (GNE)

Given a gene network denoted as G = (V, E, A), gene network embedding Temporal Holdout Validation

» Temporal holdout validation with two vetsions of interaction data: 2017 and
2018 version

aims to learn a function f that maps gene network structure and their attribute
information to a d-dimensional space where a gene is represented by a vector

y; € R* where d < M. The low dimensional vectors y; and y; for genes v; » Model trained on 2017 version and tested on 2018 version
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Assuming a gene network with expression data as node attributes:

1. Obtain dense representation vi(s) of topological properties of a gene through

, » Our method learns similar representation for genes within same operon.
topological encoder

. . . (D . . » Two-sample KS test shows that genes within the same operon have significantly

2. Obtain expression representation ;- ’ of a gene by passing expression data o ,
. similar vector representation than expected by chance.
through expression encoder
. . . S a
3. Get the joint representation v,-( ) + Avi( ) Sensitivity Analysis
4. 'Transtorm the representations using nonlinear layers » Integration of expression data with % N significant improvement when
5. Predict probability of interactions topological properties improves the number of (training) interactions
. . . erformance. i 0

6. Update the parameters of encoders, hidden layers by applying gradient descent b increases (> 50%).

to optimize maximum likelihood loss
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